3.7.17 \(\int \frac {(a+a \sin (e+f x))^m}{\sqrt {c+d \sin (e+f x)}} \, dx\) [617]

Optimal. Leaf size=131 \[ \frac {\sqrt {2} F_1\left (\frac {1}{2}+m;\frac {1}{2},\frac {1}{2};\frac {3}{2}+m;\frac {1}{2} (1+\sin (e+f x)),-\frac {d (1+\sin (e+f x))}{c-d}\right ) \cos (e+f x) (a+a \sin (e+f x))^m \sqrt {\frac {c+d \sin (e+f x)}{c-d}}}{f (1+2 m) \sqrt {1-\sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \]

[Out]

AppellF1(1/2+m,1/2,1/2,3/2+m,-d*(1+sin(f*x+e))/(c-d),1/2+1/2*sin(f*x+e))*cos(f*x+e)*(a+a*sin(f*x+e))^m*2^(1/2)
*((c+d*sin(f*x+e))/(c-d))^(1/2)/f/(1+2*m)/(1-sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2867, 145, 144, 143} \begin {gather*} \frac {\sqrt {2} \cos (e+f x) (a \sin (e+f x)+a)^m \sqrt {\frac {c+d \sin (e+f x)}{c-d}} F_1\left (m+\frac {1}{2};\frac {1}{2},\frac {1}{2};m+\frac {3}{2};\frac {1}{2} (\sin (e+f x)+1),-\frac {d (\sin (e+f x)+1)}{c-d}\right )}{f (2 m+1) \sqrt {1-\sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^m/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

(Sqrt[2]*AppellF1[1/2 + m, 1/2, 1/2, 3/2 + m, (1 + Sin[e + f*x])/2, -((d*(1 + Sin[e + f*x]))/(c - d))]*Cos[e +
 f*x]*(a + a*Sin[e + f*x])^m*Sqrt[(c + d*Sin[e + f*x])/(c - d)])/(f*(1 + 2*m)*Sqrt[1 - Sin[e + f*x]]*Sqrt[c +
d*Sin[e + f*x]])

Rule 143

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c
- a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 144

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
(b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 145

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*(b*(c/(b*c -
 a*d)) + b*d*(x/(b*c - a*d)))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x] &&  !SimplerQ[e +
 f*x, a + b*x]

Rule 2867

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dis
t[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a + b*x)^(m - 1/2)*((c
+ d*x)^n/Sqrt[a - b*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {(a+a \sin (e+f x))^m}{\sqrt {c+d \sin (e+f x)}} \, dx &=\frac {\left (a^2 \cos (e+f x)\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m}}{\sqrt {a-a x} \sqrt {c+d x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}}\\ &=\frac {\left (a^2 \cos (e+f x) \sqrt {\frac {a-a \sin (e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m}}{\sqrt {\frac {1}{2}-\frac {x}{2}} \sqrt {c+d x}} \, dx,x,\sin (e+f x)\right )}{\sqrt {2} f (a-a \sin (e+f x)) \sqrt {a+a \sin (e+f x)}}\\ &=\frac {\left (a^2 \cos (e+f x) \sqrt {\frac {a-a \sin (e+f x)}{a}} \sqrt {\frac {a (c+d \sin (e+f x))}{a c-a d}}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m}}{\sqrt {\frac {1}{2}-\frac {x}{2}} \sqrt {\frac {a c}{a c-a d}+\frac {a d x}{a c-a d}}} \, dx,x,\sin (e+f x)\right )}{\sqrt {2} f (a-a \sin (e+f x)) \sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\\ &=\frac {\sqrt {2} F_1\left (\frac {1}{2}+m;\frac {1}{2},\frac {1}{2};\frac {3}{2}+m;\frac {1}{2} (1+\sin (e+f x)),-\frac {d (1+\sin (e+f x))}{c-d}\right ) \cos (e+f x) (a+a \sin (e+f x))^m \sqrt {\frac {c+d \sin (e+f x)}{c-d}}}{f (1+2 m) \sqrt {1-\sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(373\) vs. \(2(131)=262\).
time = 1.23, size = 373, normalized size = 2.85 \begin {gather*} -\frac {6 (c+d) F_1\left (\frac {1}{2};\frac {1}{2}-m,\frac {1}{2};\frac {3}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right ) \cos ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )^{-\frac {1}{2}+m} \cot \left (\frac {1}{4} (2 e+\pi +2 f x)\right ) (a (1+\sin (e+f x)))^m \sin ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right )^{\frac {1}{2}-m}}{f \sqrt {c+d \sin (e+f x)} \left (3 (c+d) F_1\left (\frac {1}{2};\frac {1}{2}-m,\frac {1}{2};\frac {3}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right )+\left (2 d F_1\left (\frac {3}{2};\frac {1}{2}-m,\frac {3}{2};\frac {5}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right )-(c+d) (-1+2 m) F_1\left (\frac {3}{2};\frac {3}{2}-m,\frac {1}{2};\frac {5}{2};\cos ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right ),\frac {2 d \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )}{c+d}\right )\right ) \sin ^2\left (\frac {1}{4} (2 e-\pi +2 f x)\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sin[e + f*x])^m/Sqrt[c + d*Sin[e + f*x]],x]

[Out]

(-6*(c + d)*AppellF1[1/2, 1/2 - m, 1/2, 3/2, Cos[(2*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c
 + d)]*(Cos[(2*e - Pi + 2*f*x)/4]^2)^(-1/2 + m)*Cot[(2*e + Pi + 2*f*x)/4]*(a*(1 + Sin[e + f*x]))^m*(Sin[(2*e +
 Pi + 2*f*x)/4]^2)^(1/2 - m))/(f*Sqrt[c + d*Sin[e + f*x]]*(3*(c + d)*AppellF1[1/2, 1/2 - m, 1/2, 3/2, Cos[(2*e
 + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)] + (2*d*AppellF1[3/2, 1/2 - m, 3/2, 5/2, Cos[(2
*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)] - (c + d)*(-1 + 2*m)*AppellF1[3/2, 3/2 - m,
1/2, 5/2, Cos[(2*e + Pi + 2*f*x)/4]^2, (2*d*Sin[(2*e - Pi + 2*f*x)/4]^2)/(c + d)])*Sin[(2*e - Pi + 2*f*x)/4]^2
))

________________________________________________________________________________________

Maple [F]
time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{m}}{\sqrt {c +d \sin \left (f x +e \right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^(1/2),x)

[Out]

int((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m/sqrt(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)^m/sqrt(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m}}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**m/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**m/sqrt(c + d*sin(e + f*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m/sqrt(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{\sqrt {c+d\,\sin \left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^m/(c + d*sin(e + f*x))^(1/2),x)

[Out]

int((a + a*sin(e + f*x))^m/(c + d*sin(e + f*x))^(1/2), x)

________________________________________________________________________________________